\(\int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx\) [637]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 410 \[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 e (e f+7 d g) \sqrt {f+g x} \sqrt {a+c x^2}}{15 c g}+\frac {2 e (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}{5 c}+\frac {2 \sqrt {-a} \left (9 a e^2 g^2+c \left (2 e^2 f^2-10 d e f g-15 d^2 g^2\right )\right ) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 c^{3/2} g^2 \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} e (e f-5 d g) \left (c f^2+a g^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 c^{3/2} g^2 \sqrt {f+g x} \sqrt {a+c x^2}} \]

[Out]

2/15*e*(7*d*g+e*f)*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/c/g+2/5*e*(e*x+d)*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/c+2/15*(9*a*e
^2*g^2+c*(-15*d^2*g^2-10*d*e*f*g+2*e^2*f^2))*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*g/(-a*
g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(g*x+f)^(1/2)*(1+c*x^2/a)^(1/2)/c^(3/2)/g^2/(c*x^2+a)^(1/2)/((g*x+f
)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)-4/15*e*(-5*d*g+e*f)*(a*g^2+c*f^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1
/2))^(1/2)*2^(1/2),(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(1+c*x^2/a)^(1/2)*((g*x+f)*c^(1/2)/(
g*(-a)^(1/2)+f*c^(1/2)))^(1/2)/c^(3/2)/g^2/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 410, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {956, 1668, 858, 733, 435, 430} \[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} \left (9 a e^2 g^2+c \left (-15 d^2 g^2-10 d e f g+2 e^2 f^2\right )\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 c^{3/2} g^2 \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}-\frac {4 \sqrt {-a} e \sqrt {\frac {c x^2}{a}+1} \left (a g^2+c f^2\right ) (e f-5 d g) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 c^{3/2} g^2 \sqrt {a+c x^2} \sqrt {f+g x}}+\frac {2 e \sqrt {a+c x^2} \sqrt {f+g x} (7 d g+e f)}{15 c g}+\frac {2 e \sqrt {a+c x^2} (d+e x) \sqrt {f+g x}}{5 c} \]

[In]

Int[((d + e*x)^2*Sqrt[f + g*x])/Sqrt[a + c*x^2],x]

[Out]

(2*e*(e*f + 7*d*g)*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(15*c*g) + (2*e*(d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(5*
c) + (2*Sqrt[-a]*(9*a*e^2*g^2 + c*(2*e^2*f^2 - 10*d*e*f*g - 15*d^2*g^2))*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*Ell
ipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(15*c^(3/2)*g^2*S
qrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) - (4*Sqrt[-a]*e*(e*f - 5*d*g)*(c*f^2 + a*g^
2)*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x
)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(15*c^(3/2)*g^2*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 956

Int[(((d_.) + (e_.)*(x_))^(m_)*Sqrt[(f_.) + (g_.)*(x_)])/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2*e*(d +
 e*x)^(m - 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/(c*(2*m + 1))), x] - Dist[1/(c*(2*m + 1)), Int[((d + e*x)^(m - 2)
/(Sqrt[f + g*x]*Sqrt[a + c*x^2]))*Simp[a*e*(d*g + 2*e*f*(m - 1)) - c*d^2*f*(2*m + 1) + (a*e^2*g*(2*m - 1) - c*
d*(4*e*f*m + d*g*(2*m + 1)))*x - c*e*(e*f + d*g*(4*m - 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[2*m] && GtQ[m, 1]

Rule 1668

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + c*x^2)^(p + 1)/(c*e^(q - 1)*(m + q + 2*p + 1))), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - c*d^2*(m + q + 2*p + 1) - 2*c*d*e*(
m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq
, x] && NeQ[c*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && True) &&  !(IGtQ[m, 0] && RationalQ[a, c, d, e] && (IntegerQ[
p] || ILtQ[p + 1/2, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {2 e (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}{5 c}-\frac {\int \frac {-5 c d^2 f+a e (2 e f+d g)+\left (3 a e^2 g-c d (8 e f+5 d g)\right ) x-c e (e f+7 d g) x^2}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{5 c} \\ & = \frac {2 e (e f+7 d g) \sqrt {f+g x} \sqrt {a+c x^2}}{15 c g}+\frac {2 e (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}{5 c}-\frac {2 \int \frac {-\frac {1}{2} c g^2 \left (15 c d^2 f-a e (7 e f+10 d g)\right )+\frac {1}{2} c g \left (9 a e^2 g^2+c \left (2 e^2 f^2-10 d e f g-15 d^2 g^2\right )\right ) x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{15 c^2 g^2} \\ & = \frac {2 e (e f+7 d g) \sqrt {f+g x} \sqrt {a+c x^2}}{15 c g}+\frac {2 e (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}{5 c}-\frac {1}{15} \left (-15 d^2+e^2 \left (\frac {9 a}{c}+\frac {2 f^2}{g^2}\right )-\frac {10 d e f}{g}\right ) \int \frac {\sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx+\frac {\left (2 e (e f-5 d g) \left (c f^2+a g^2\right )\right ) \int \frac {1}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{15 c g^2} \\ & = \frac {2 e (e f+7 d g) \sqrt {f+g x} \sqrt {a+c x^2}}{15 c g}+\frac {2 e (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}{5 c}-\frac {\left (2 a \left (-15 d^2+e^2 \left (\frac {9 a}{c}+\frac {2 f^2}{g^2}\right )-\frac {10 d e f}{g}\right ) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} \sqrt {c} \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (4 a e (e f-5 d g) \left (c f^2+a g^2\right ) \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} c^{3/2} g^2 \sqrt {f+g x} \sqrt {a+c x^2}} \\ & = \frac {2 e (e f+7 d g) \sqrt {f+g x} \sqrt {a+c x^2}}{15 c g}+\frac {2 e (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}{5 c}-\frac {2 \sqrt {-a} \left (15 d^2-e^2 \left (\frac {9 a}{c}+\frac {2 f^2}{g^2}\right )+\frac {10 d e f}{g}\right ) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} e (e f-5 d g) \left (c f^2+a g^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 c^{3/2} g^2 \sqrt {f+g x} \sqrt {a+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 25.09 (sec) , antiderivative size = 591, normalized size of antiderivative = 1.44 \[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {\sqrt {f+g x} \left (\frac {2 e \left (a+c x^2\right ) (10 d g+e (f+3 g x))}{c g}+\frac {(f+g x) \left (\frac {2 g^2 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} \left (-9 a e^2 g^2+c \left (-2 e^2 f^2+10 d e f g+15 d^2 g^2\right )\right ) \left (a+c x^2\right )}{(f+g x)^2}+\frac {2 \sqrt {c} \left (-i \sqrt {c} f+\sqrt {a} g\right ) \left (-9 a e^2 g^2+c \left (-2 e^2 f^2+10 d e f g+15 d^2 g^2\right )\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} E\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )}{\sqrt {f+g x}}+\frac {2 \sqrt {c} g \left (\sqrt {c} f+i \sqrt {a} g\right ) \left (15 i c d^2 g-9 i a e^2 g+2 \sqrt {a} \sqrt {c} e (e f-5 d g)\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right ),\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )}{\sqrt {f+g x}}\right )}{c^2 g^3 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}\right )}{15 \sqrt {a+c x^2}} \]

[In]

Integrate[((d + e*x)^2*Sqrt[f + g*x])/Sqrt[a + c*x^2],x]

[Out]

(Sqrt[f + g*x]*((2*e*(a + c*x^2)*(10*d*g + e*(f + 3*g*x)))/(c*g) + ((f + g*x)*((2*g^2*Sqrt[-f - (I*Sqrt[a]*g)/
Sqrt[c]]*(-9*a*e^2*g^2 + c*(-2*e^2*f^2 + 10*d*e*f*g + 15*d^2*g^2))*(a + c*x^2))/(f + g*x)^2 + (2*Sqrt[c]*((-I)
*Sqrt[c]*f + Sqrt[a]*g)*(-9*a*e^2*g^2 + c*(-2*e^2*f^2 + 10*d*e*f*g + 15*d^2*g^2))*Sqrt[(g*((I*Sqrt[a])/Sqrt[c]
 + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)
/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)])/Sqrt[f + g*x] + (2*Sqrt[c]*g*(
Sqrt[c]*f + I*Sqrt[a]*g)*((15*I)*c*d^2*g - (9*I)*a*e^2*g + 2*Sqrt[a]*Sqrt[c]*e*(e*f - 5*d*g))*Sqrt[(g*((I*Sqrt
[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*EllipticF[I*ArcSinh[Sqrt[-f - (
I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)])/Sqrt[f + g*x]))/(c
^2*g^3*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]])))/(15*Sqrt[a + c*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(699\) vs. \(2(338)=676\).

Time = 2.09 (sec) , antiderivative size = 700, normalized size of antiderivative = 1.71

method result size
elliptic \(\frac {\sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 e^{2} x \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}{5 c}+\frac {2 \left (2 d e g +\frac {1}{5} e^{2} f \right ) \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}{3 c g}+\frac {2 \left (d^{2} f -\frac {2 e^{2} f a}{5 c}-\frac {\left (2 d e g +\frac {1}{5} e^{2} f \right ) a}{3 c}\right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}+\frac {2 \left (d^{2} g +2 d e f -\frac {3 e^{2} a g}{5 c}-\frac {2 \left (2 d e g +\frac {1}{5} e^{2} f \right ) f}{3 g}\right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}\right )}{\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(700\)
risch \(\text {Expression too large to display}\) \(1073\)
default \(\text {Expression too large to display}\) \(2470\)

[In]

int((e*x+d)^2*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((g*x+f)*(c*x^2+a))^(1/2)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)*(2/5*e^2/c*x*(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)+2/3*(2*
d*e*g+1/5*e^2*f)/c/g*(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)+2*(d^2*f-2/5*e^2/c*f*a-1/3*(2*d*e*g+1/5*e^2*f)/c*a)*(f/
g-(-a*c)^(1/2)/c)*((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)*((x+(-
a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)*EllipticF(((x+f/g)/(f/g-(-a*c)^(1
/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2))+2*(d^2*g+2*d*e*f-3/5*e^2/c*a*g-2/3*(2*d*e*g
+1/5*e^2*f)/g*f)*(f/g-(-a*c)^(1/2)/c)*((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1
/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)*((-f/g-(-a*c)
^(1/2)/c)*EllipticE(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2))+
(-a*c)^(1/2)/c*EllipticF(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1
/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 300, normalized size of antiderivative = 0.73 \[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \, {\left (2 \, {\left (c e^{2} f^{3} - 5 \, c d e f^{2} g - 15 \, a d e g^{3} + 3 \, {\left (5 \, c d^{2} - 2 \, a e^{2}\right )} f g^{2}\right )} \sqrt {c g} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right ) + 3 \, {\left (2 \, c e^{2} f^{2} g - 10 \, c d e f g^{2} - 3 \, {\left (5 \, c d^{2} - 3 \, a e^{2}\right )} g^{3}\right )} \sqrt {c g} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right ) + 3 \, {\left (3 \, c e^{2} g^{3} x + c e^{2} f g^{2} + 10 \, c d e g^{3}\right )} \sqrt {c x^{2} + a} \sqrt {g x + f}\right )}}{45 \, c^{2} g^{3}} \]

[In]

integrate((e*x+d)^2*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/45*(2*(c*e^2*f^3 - 5*c*d*e*f^2*g - 15*a*d*e*g^3 + 3*(5*c*d^2 - 2*a*e^2)*f*g^2)*sqrt(c*g)*weierstrassPInverse
(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1/3*(3*g*x + f)/g) + 3*(2*c*e^2*f^2*g - 10*
c*d*e*f*g^2 - 3*(5*c*d^2 - 3*a*e^2)*g^3)*sqrt(c*g)*weierstrassZeta(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3
 + 9*a*f*g^2)/(c*g^3), weierstrassPInverse(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1
/3*(3*g*x + f)/g)) + 3*(3*c*e^2*g^3*x + c*e^2*f*g^2 + 10*c*d*e*g^3)*sqrt(c*x^2 + a)*sqrt(g*x + f))/(c^2*g^3)

Sympy [F]

\[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int \frac {\left (d + e x\right )^{2} \sqrt {f + g x}}{\sqrt {a + c x^{2}}}\, dx \]

[In]

integrate((e*x+d)**2*(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)**2*sqrt(f + g*x)/sqrt(a + c*x**2), x)

Maxima [F]

\[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{2} \sqrt {g x + f}}{\sqrt {c x^{2} + a}} \,d x } \]

[In]

integrate((e*x+d)^2*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^2*sqrt(g*x + f)/sqrt(c*x^2 + a), x)

Giac [F]

\[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{2} \sqrt {g x + f}}{\sqrt {c x^{2} + a}} \,d x } \]

[In]

integrate((e*x+d)^2*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^2*sqrt(g*x + f)/sqrt(c*x^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2 \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx=\int \frac {\sqrt {f+g\,x}\,{\left (d+e\,x\right )}^2}{\sqrt {c\,x^2+a}} \,d x \]

[In]

int(((f + g*x)^(1/2)*(d + e*x)^2)/(a + c*x^2)^(1/2),x)

[Out]

int(((f + g*x)^(1/2)*(d + e*x)^2)/(a + c*x^2)^(1/2), x)